政策解讀
納米藥物質(zhì)量控制研究技術(shù)指導(dǎo)原則
本文由馬爾文帕納科應(yīng)用專(zhuān)家張鵬博士供稿
為規(guī)范和指導(dǎo)納米藥物研究與評(píng)價(jià),在國(guó)家藥品監(jiān)督管理局的部署下,藥審中心組織制定了《納米藥物質(zhì)量控制研究技術(shù)指導(dǎo)原則(試行)》、《納米藥物非臨床藥代動(dòng)力學(xué)研究技術(shù)指導(dǎo)原則(試行)》《納米藥物非臨床安全性評(píng)價(jià)研究技術(shù)指導(dǎo)原則(試行)》三項(xiàng)關(guān)于納米藥物研究、質(zhì)控、評(píng)價(jià)的技術(shù)指導(dǎo)原則。并由經(jīng)國(guó)家藥品監(jiān)督管理局審查同意,8月27日予以發(fā)布通告,三項(xiàng)技術(shù)指導(dǎo)原則自發(fā)布之日起開(kāi)始施行。
其中《納米藥物質(zhì)量控制研究技術(shù)指導(dǎo)原則》主要內(nèi)容是圍繞著納米藥物的安全性、有效性以及質(zhì)量可控性展開(kāi)的。在這三個(gè)方面,質(zhì)量的可控性顯得尤為重要,它一定程度上決定了藥物的安全性和有效性。
在粒徑表征方面,該指導(dǎo)意見(jiàn)原文如下:
原文關(guān)于粒徑表征的相關(guān)表述
“應(yīng)選擇適當(dāng)?shù)臏y(cè)定方法對(duì)納米藥物的粒徑及分布進(jìn)行研究,并進(jìn)行完整的方法學(xué)驗(yàn)證及優(yōu)化。粒徑及分布通常采用動(dòng)態(tài)光散射法(Dynamic light scattering,DLS)進(jìn)行測(cè)定,需要使用經(jīng)過(guò)認(rèn)證的標(biāo)準(zhǔn)物質(zhì)(Certified reference material,CRM)進(jìn)行校驗(yàn),測(cè)定結(jié)果為流體動(dòng)力學(xué)粒徑(Rh),粒徑分布一般采用多分散系數(shù)(Polydispersity index,PDI)表示。除此之外,顯微成像技術(shù)(如透射電鏡(Transmission electron microscopy,TEM)、掃描電鏡(Scanning electron microscopy,SEM)和原子力顯微鏡(Atomic force microscopy,AFM)、納米顆粒跟蹤分析系統(tǒng)(Nanoparticle tracking analysis, NTA)、小角X射線散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供納米藥物粒徑大小的信息。對(duì)于非單分散的樣品,可考慮將粒徑測(cè)定技術(shù)與其它分散/分離技術(shù)聯(lián)用"
上一期我們已經(jīng)和大家介紹了基于DLS技術(shù)的粒徑測(cè)量,這一期我們準(zhǔn)備和大家講一講納米顆粒跟蹤分析技術(shù)(NTA)測(cè)量顆粒粒徑。
納米顆粒跟蹤分析技術(shù)原理
是如何進(jìn)行顆粒粒徑測(cè)量的呢?
激光照射溶液中的懸浮納米顆粒,后者產(chǎn)生的散射光被高靈敏度的相機(jī)捕獲并成像。為了得到觀測(cè)區(qū)域每個(gè)顆粒的粒徑大小,相機(jī)通過(guò)拍照的方式記錄下每個(gè)顆粒的運(yùn)動(dòng)軌跡,并分析得到每個(gè)顆粒的運(yùn)動(dòng)速率,最終這些單個(gè)顆粒的運(yùn)動(dòng)速率通過(guò)斯托克斯-愛(ài)因斯坦方程轉(zhuǎn)化為粒徑值,整個(gè)樣本的粒徑分布就是由這些顆粒的粒徑匯集而成(圖1)。
圖1. 利用納米顆粒跟蹤分析技術(shù)(NTA)對(duì)納米顆粒進(jìn)行粒徑分析(紅色線條表示顆粒的布朗運(yùn)動(dòng)軌跡)
由于該技術(shù)是單顆粒跟蹤技術(shù),所以能提供*精度的顆粒粒度的數(shù)量分布,既適合分析粒度分布較窄,也適合分析粒度分布較寬的樣本,其粒徑檢測(cè)范圍大致在10-2000nm之間。此外,如果樣品本身具有熒光,或者能夠標(biāo)記上熒光素,可以單獨(dú)采集其熒光信號(hào),進(jìn)而對(duì)熒光顆粒進(jìn)行粒度分析,不受溶液復(fù)雜體系的影響。
NTA 和 DLS 對(duì)比實(shí)驗(yàn)
測(cè)量納米級(jí)顆粒粒徑該如何選擇?
接下來(lái)通過(guò)粒徑寬窄分布不同的樣品的測(cè)量實(shí)例,著重給大家講一下NTA和DLS在測(cè)量顆粒粒徑上的相同點(diǎn)和區(qū)別點(diǎn),方便大家更好的去選擇不同的技術(shù)。
NTA & DLS
粒徑窄分布樣品
NTA 和 DLS兩種技術(shù)在粒徑窄分布樣品上的差異,我們以200nm的聚苯乙烯顆粒(PS)為考察對(duì)象。
DLS:Z average: 217.7 nm; PDI: 0.04827
NTA: Mean: 199.7nm;
Mode: 196.2nm
圖2 DLS、NTA表征200 nm聚苯乙烯顆粒(PS)的粒徑分布
我們?cè)賹煞N技術(shù)表征的結(jié)果合并到一塊,看看有沒(méi)有差異。
圖3 NTA和DLS測(cè)量窄分布樣品合并圖
從圖3中我們能夠看到,NTA和DLS技術(shù)都能很好的表征粒徑窄分布的樣品,但是NTA得到的粒徑分布圖比DLS的更窄。
通過(guò)圖2、3我們得出如下結(jié)論:DLS和NTA都能很好的表征粒徑窄分布的樣品,且其平均值及主峰值都十分接近,但是NTA得到的粒徑分布峰更窄,這也和其采用的單顆粒跟蹤技術(shù)相符合。
NTA & DLS
粒徑寬分布樣品
再來(lái)看看寬分布的樣品。我們將100 nm和200 nm的PS標(biāo)準(zhǔn)品混合后,獲得粒徑寬分布樣品,將其做為考察對(duì)象。分別利用NTA和DLS對(duì)他們進(jìn)行粒徑表征:
DLS: Z average: 206.7 nm; PDI: 0.002214
NTA: Mean: 171.4 nm;
Mode: 194.8 nm
圖4 DLS、NTA表征100、200 nm聚苯乙烯顆粒(PS)混合體的粒徑分布
從圖4我們可以看出來(lái),DLS仍舊顯示出一個(gè)單峰,其Z均值為206.7 nm;NTA成功將100 nm和200 nm的PS顆粒區(qū)分開(kāi)來(lái),在粒徑分布圖上呈現(xiàn)出兩個(gè)明顯的單峰(109 nm、195 nm),這說(shuō)明NTA的粒徑分辨率是要高于DLS的。
圖5 DLS和NTA測(cè)量100、200 nm聚苯乙烯顆粒(PS)混合體的粒徑分布合并圖
通過(guò)圖5,將兩種技術(shù)得到的粒徑分布圖合并到一塊,我們可進(jìn)一步發(fā)現(xiàn),DLS的結(jié)果更偏向于體系中的大顆粒,較小的100 nm的信號(hào)被較多的忽略了。這說(shuō)明DLS對(duì)體系中的大顆粒更敏感,而NTA對(duì)體系中大、小顆粒的敏感程度較為接近??傮w來(lái)說(shuō),NTA的粒徑分辨率能達(dá)到1:1.3,而DLS的粒徑分辨率只能低到1:3。
DLS&NTA
示例:水包油乳劑
在水包油乳劑的實(shí)際樣品案例中,如圖6,7 DLS和NTA的粒徑分布圖以及兩項(xiàng)技術(shù)的合并圖顯示,DLS的分辨率較低,無(wú)法分辨出體系中存在的更小的顆粒。
DLS: Z average: 151.9 nm; PDI: 0.09714
NTA: Mean size: 116.2 nm; Mode size: 89.1 nm
圖6 DLS、NTA表征水包油乳劑的粒徑分布
圖7 DLS和NTA測(cè)量水包油乳劑的粒徑分布合并圖
實(shí)際案例
NTA適用:細(xì)胞外囊泡(EV)
實(shí)際案例
NTA適用:脂質(zhì)納米顆粒(LNP)
實(shí)際案例
NTA適用:慢病毒
實(shí)際案例
蛋白聚集體
實(shí)際案例
NTA適用:納米磁球
關(guān)于馬爾文帕納科
馬爾文帕納科的使命是通過(guò)對(duì)材料進(jìn)行化學(xué)、物性和結(jié)構(gòu)分析,打造出更好的客戶(hù)導(dǎo)向型創(chuàng)新解決方案和服務(wù),從而提高效率和產(chǎn)生可觀的經(jīng)濟(jì)效益。通過(guò)利用包括人工智能和分析預(yù)測(cè)在內(nèi)的最近技術(shù)發(fā)展,我們能夠逐步實(shí)現(xiàn)這一目標(biāo)。這將讓各個(gè)行業(yè)和組織的科學(xué)家和工程師可解決一系列難題,如盡可能地提高生產(chǎn)率、開(kāi)發(fā)更高質(zhì)量的產(chǎn)品,并縮短產(chǎn)品上市時(shí)間。